The generator matrix 1 0 1 1 1 X^2 1 1 0 0 1 1 1 0 1 1 X^2 1 1 1 X^2 1 1 0 0 1 1 1 1 X 1 X^2+X 1 1 1 X 1 X 1 1 1 X 1 X 1 1 1 1 X^2+X X^2+X X 1 X^2+X 0 1 1 1 1 1 X X^2 0 1 X 0 1 1 0 1 1 0 1 1 X^2 X+1 1 1 X^2 X^2+X+1 X^2 1 X^2+1 X^2 1 X^2+X+1 X^2+X 1 1 X^2 X+1 1 1 X^2 X^2+1 0 X+1 1 X^2+X 1 X^2+X+1 0 X^2+X 1 X^2+1 1 1 X+1 X 1 X^2 1 1 X 1 X^2+X+1 1 1 1 X^2+X 1 1 X^2 1 X^2 X^2+1 X+1 1 1 1 X^2+X X^2+X 1 1 X^2+X+1 0 0 X 0 0 0 0 X^2 X^2+X X X^2+X X^2+X X^2+X X^2 0 X^2+X X X^2+X 0 X^2+X X^2 X X^2 X^2+X X^2+X X^2 X^2 0 X^2 X^2+X X^2+X 0 X^2+X X X X^2+X X X X^2 X^2+X X^2 0 X^2+X 0 X^2 X^2 X^2 X X^2+X X X^2+X X^2+X X^2+X X X X^2+X 0 X X X^2 X^2+X X X^2 X 0 X^2 X 0 0 0 X 0 0 X^2 X^2 X^2 X^2 0 X^2 X^2 X^2+X X X^2+X X^2+X X X^2+X X^2+X X X X X^2+X 0 X^2+X 0 X^2 X^2+X X^2 0 0 X X^2 X^2+X X X^2 X^2 X^2 X^2 0 X 0 X^2+X X^2 X^2+X X^2+X X^2 0 X^2+X X^2+X X X^2 X X X X^2+X 0 X X 0 0 0 X 0 0 X^2+X 0 0 0 0 X X^2+X X^2+X X^2 X 0 0 X^2+X X X X X^2+X X^2 X X X^2 0 X^2 X^2 X X^2+X X^2+X X^2 X X X^2 X X^2+X X^2+X 0 X 0 X 0 0 X^2 0 0 X^2+X X^2+X X X^2 0 X^2+X X X^2+X X^2+X X^2 X^2+X X^2+X 0 X^2 X^2 X X^2 X^2+X X X^2+X X^2+X X X^2 X^2+X X^2+X generates a code of length 67 over Z2[X]/(X^3) who´s minimum homogenous weight is 60. Homogenous weight enumerator: w(x)=1x^0+127x^60+72x^61+414x^62+124x^63+569x^64+204x^65+554x^66+224x^67+433x^68+192x^69+436x^70+156x^71+347x^72+44x^73+94x^74+8x^75+28x^76+28x^78+26x^80+8x^82+3x^84+2x^86+1x^88+1x^92 The gray image is a linear code over GF(2) with n=268, k=12 and d=120. This code was found by Heurico 1.16 in 0.977 seconds.